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Abstract

The performances of existing dust dry deposition schemes are rather unsatisfactory
for rough surfaces. In this study, we propose a new scheme to overcome some of
the deficiencies. The scheme takes into consideration of the impacts of roughness
elements on turbulent dust diffusion and surface dust collection. A relationship between5

the aerodynamics and surface collection process is established by using an analogy
between deposition-flux partition and drag partition. The scheme is then tested against
a wind-tunnel dataset for four different surfaces and a good agreement between the
scheme predictions and the observations is found. The sensitivity of the scheme to the
input parameters is tested. Important factors which affect dust deposition in different10

particle size ranges are identified. The scheme shows good capacity for modeling dust
deposition over rough surfaces.

1 Introduction

Dust dry deposition, the removal of dust from the atmosphere onto the surface in the
absence of precipitation, can be divided into several sub-processes, including turbu-15

lence diffusion, surface collection and gravitational settling (Droppo, 2006). To estimate
dust deposition flux in terms of dust concentration, the method of deposition velocity
(or its inverses, the resistance) is widely used (Sehmel, 1980; Slinn, 1982; Hicks et al.,
1987; Wesely and Hicks, 2000; Raupach et al., 2001; Zhang et al., 2001; Petroff and
Zhang, 2010; Seinfeld and Pandis, 2012; Kouznetsov and Sofiev, 2012). The effects of20

the sub-processes are represented with the corresponding resistances, i.e. turbulence
diffusion, surface collection and gravitational settling are respectively related to aerody-
namic resistance, surface resistance and gravitational resistance. Deposition velocity,
defined as the ratio of dust deposition flux and dust concentration is a quantity which
describes the joint effect of the above mentioned resistances.25
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Deposition velocity is a key quantity used in dust deposition parameterizations. The
approach is in analogy to electrical circuits: deposition velocity is considered to be the
inverse of the deposition resistance which comprises the contributions of the aero-
dynamic and surface resistances in series and the gravitational resistance in parallel
(Hicks et al., 1987; Seinfeld and Pandis, 2012). Slinn (1982) deduced an analytical5

expression for dust deposition velocity over canopy surface based on the dust concen-
tration equation. In his approach, the gravitational effect was not considered at first but
then directly added to the result.

The existing deposition-velocity approach has two deficits. First, while the gravita-
tional resistance is often treated as a resistance in parallel to the turbulent diffusion10

resistance, gravitational settling is not driven by concentration gradient and the set-
tling process cannot be expressed in an electrical-circuit analogy. More specifically, the
usual treatment of gravitational settling as a parallel resistance (Slinn, 1982; Zhang
et al., 2001; Petroff and Zhang, 2010), including the modified version of Seinfeld and
Pandis (2012), does not satisfy the dust mass conservation requirement (Venkatram15

and Pleim, 1999). Second, the collection of particles by the surface is normally de-
scribed based on the studies of dust deposition on isolated collectors (Petroff et al.,
2008). Kouznetsov and Sofiev (2012) reported a more detailed scheme, but the “col-
lection scale” they introduced does not have a clear physical interpretation and is thus
practically difficult to determine. In dust deposition schemes, the typical size of the sur-20

face collectors is often the only parameter used for the characterization of the surface,
which is insufficient for rough surfaces.

The deficiencies of the existing dust deposition schemes are clearly revealed in our
recent comparison of the Slinn and Slinn (1980, SS80 hereafter) and Slinn (1982, S82
hereafter) with the wind-tunnel observations, as described in the companion paper by25

Zhang et al. (2014). The results of the latter study are summarized in Fig. 1 which
shows that the SS80 and S82 schemes work well for smooth surfaces (such as wood
surface) but perform rather poorly for rough surfaces (e.g. surface with trees). By tuning
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some input parameters, the model-observation discrepancies can be reduced, but the
parameters become physically unrealistic.

In the present paper, a new parameterization of dust dry deposition is proposed. The
deposition velocity is derived from the dust concentration equation with a boundary
condition which involves the surface collection process. The relationship between sur-5

face momentum flux (drag) and deposition flux is established by combining momentum
depletion and dust collection. The drag partition theory and its parameterization are
introduced to describe the surface collection process in the new scheme. The effects
of gravitational settling and surface collectors over a rough surface are now adequately
dealt with. Finally, the new scheme is validated by the measurements of the wind-tunnel10

experiments as described in Zhang et al. (2014).

2 Parameterization scheme for dust deposition

2.1 Assumptions

We firstly introduce the assumptions for the new scheme. Following Raupach (1992)
and Shao and Yang (2005, 2008), we consider a rough surface to be a flat ground15

surface superposed with roughness elements (rocks, trees, buildings etc.) as illustrated
in Fig. 2a. The roughness elements are assumed to be uniform in size and randomly
distributed on the surface (Fig. 2b). The flow and dust fields over the surface are in
steady state and horizontally homogeneous.

The atmospheric boundary layer is divided into two parts (Fig. 3). The upper part20

above the collection layer is the transfer layer, in which dust is transported mainly by
eddy diffusion and gravitation settling. As dust concentration is in steady state and
horizontally homogeneous, the dust deposition flux, Fd, is vertically constant and obeys
the following equation:

Fd = −(kp +Kp) · ∂c
∂z

−wt ·c (1)25
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where c is dust concentration, kp dust Brownian diffusivity, Kp dust eddy diffusivity and
wt the dust terminal velocity. Fd is upward positive.

The lower part is the collection layer with thickness of

h = hc +δ (2)
5

where hc is the roughness element height and δ the thickness of the laminar layer
over the roughness elements. The laminar layer may be broken at the top of the ele-
ments and hc is usually much larger than δ. Therefore, in general, the thickness of the
collection layer is hc for a rough surface and δ for a smooth surface.

Equation (1) can be solved for a given boundary condition. Since Fd is vertically10

constant and deposition velocity is defined as wd = −Fd/c (wd is downward positive).
By solving Eq. (1), one obtains that

wd(z) =

(
rg +

rs − rg

exp(ra/rg)

)−1

(3)

with the boundary condition15

wd(h) = −
Fd

c(h)
=

1
rs

(4)

where ra is the aerodynamic resistance accounting for the dust diffusion, given by

ra (z) =

z∫
h

1
Kp(z)+kp

dz (5)

20

rs is the surface collection resistance, and rg the gravitational resistance defined as the

inverse of dust terminal velocity, i.e. rg = w−1
t .
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2.2 Aerodynamic resistance

In the transfer layer, kp is negligible and Kp can be derived from the eddy viscosity
for neutral particles KT. Csanady (1963) derived an expression of the ratio of Kp/KT
(i.e. ScT, the turbulent Schmidt number) by taking the trajectory-crossing effect into
consideration5

ScT =
Kp

KT
=

(
1+

α2w2
t

σ2

)−1/2

(6)

where α is a dimensionless coefficient and σ the standard deviation of the turbulent
velocity. In this study, α is taken as 1 and σ as friction velocity u∗. The expression of KT
is normally found as (Seinfeld and Pandis, 2012)10

KT =
κu∗(z− zd)

ϕ(ζ )
(7)

where k is the von Karman constant, and zd the zero-plane displacement height, ϕ
a stability function, ζ = (z− zd)/L and L the Obukhov length.

An integration of Eq. (5) yields15

ra(z) =
1

ScT · κu∗

[ϕ(ζ ) · ln(z− zd)
]z
h −

z∫
h

ln(z− zd)d(ϕ)

 (8)

For neutral atmospheric boundary layers, ϕ = 1. Then we have

ra(z) =
1

ScT · κu∗
ln
(
z− zd

hc − zd

)
for rough surface (9a)

ra(z) =
B1

ScT · κu∗
ln
(
z
z0

)
for smooth surface (9b)20
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where B1 is an empirical constant determined by the airflow characteristic over the
surface. The term B1/ScT is set to 0.6 in SS80 and 1 in Zhang et al. (2001). In this
study, the value of B1 is estimated to be 0.45, based on the wind-tunnel measurements
of Zhang et al. (2014).

2.3 Gravitational resistance5

In the Stokes regime, rg can be calculated as

rg = (Tp ·g)−1 (10)

where g is the gravitational acceleration and

Tp =
CcρpD

2
p

18µ
(11)10

is the particle relaxation time. Cc the Cunningham correction factor which accounts for
non-continuum effects when calculating drag on small particles, Dp particle diameter,
ρp particle density and µ air viscosity.

2.4 Surface collection resistance15

The surface collection resistance is the essence of the lower boundary condition for
solving Eq. (1), which is given either in form of the deposition flux or dust concentration
at the surface. As the rough surface is considered to be a smooth surface superposed
with rough elements (Fig. 2), it comprises upward facing areas (ground and element
roof areas) and the side areas of the elements. The deposition flux can be thus parti-20

tioned to several components which correspond to the deposition fluxes to these areas,
similar to drag partition. By doing so, a relationship between the dust flux partition and
drag partition can be established and the drag partition theory enables the estimation
of the surface collection resistance.
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In analogy to drag partition theory (e.g. Arya, 1975; Raupach, 1992; Shao and Yang,
2005, 2008), the deposition flux can be split into three parts:

Fd = Fd,c + Fd,s + Fd,r (12)

where Fd,c is the dust flux due to dust collection by the roughness elements (collectors),5

Fd,s is that deposited on the ground surface and Fd,r on the roof of the elements.
Per definition, the force exerted on a roughness element (pressure drag) can be

calculated as

τc = Cd ·ρa · λ ·u2
a(h) (13)

10

where Cd, the drag coefficient for isolated roughness element, is approximately 0.3
(Shao, 2008), ρa air density, λ the frontal area index (∼ dchc) of the roughness element
and ua the air horizontal speed. Similarly, the dust flux due to dust collection by the
roughness elements can be expressed as

Fd,c = −E ·c(h) · λ ·ua(h) (14)15

where c is dust concentration and E dust collection efficiency of isolated roughness
elements.

A combination of Eqs. (13) and (14) yields the relationship between the pressure
drag and the deposited flux due to roughness element collection and thus the expres-20

sion of Fd,c can be written as

Fd,c = −
τc

τ
· τ
ρaua(h)

· E
Cd

·c(h) (15)

where τ is the total shear stress (or drag) on the surface. The element collection effi-
ciency, E , represents the collected fraction of all dust particles initially moving on a col-25

lision course with the roughness elements. It consists of the contributions of Brownian
motion, impaction and interception, i.e.

E = EB +E im +E in (16)
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where EB is the collection efficiency caused by Brownian motion and can be estimated
following Petroff et al. (2008):

EB = CBSc−2/3RenB−1 (17)

where Sc = ν/kp is the Schmidt number with ν being the kinematic viscosity and kp the5

particle molecular diffusivity. Re is the roughness element Reynolds number. CB and
nB are parameters depending on flow regimes as shown in Table 1.
E im is the impaction efficiency due to dust collection on roughness elements. Follow-

ing Petroff et al. (2008), we have,

E im =
(

St
0.6+St

)2

(18)10

where St = Tpu∗/dc.
Taking into account of the possible particle growth, Dp,δ is used to distinguish from Dp

for describing the size of grown particles moving close to the surface. Dp,δ can be esti-
mated following Fitzgerald (1975) or Gerber (1985). Later, the subscript δ is introduced15

(e.g. Tp,δ) to describe the replacement of Dp with Dp,δ in the relevant calculations.

E in is the collection efficiency due to interception. Based on the theoretical results
for potential flows, Fuchs (1964) suggested that E in should be directly proportional
to particle size (Dp) and inversely proportional to the size of roughness element (dc).
Slinn (1982) considered that in addition to the size of the roughness element, the mi-20

cro roughness characteristics (i.e. the characteristics of the roughness element sur-
face, e.g. hair on tree leaves) are also important for interception. Our wind-tunnel study
(Zhang et al., 2014) shows E in is also enhanced by friction velocity, u∗. In summary, it
is appropriate to propose that

E in = Ain ·u∗ ·10−St ·
2 ·Dp,δ

dc
(19)25
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According to the definition, interception describes the behaviors of particles which can
follow the flow well. The term 10−St is introduced to correct the deviation from this re-
quirement, and it approaches 1 for particles of small inertial. To account for the effect
of micro-roughness characteristics, the term Ainu∗ is introduced, with Ain being an em-
pirical parameter related to the micro-roughness characteristics, e.g., the ratio of hair5

size to roughness element size.
Dust deposition to the element-roof and the ground surfaces is caused by the mech-

anisms of gravitational settling, Brownian diffusion and impaction, thus we have

Fd,r = F g
d,r + F B

d,r + F im
d,r (20)

Fd,s = F g
d,s + F B

d,s + F im
d,s (21)10

where F g
d,r and F g

d,s are caused by gravitational settling, F B
d,r and F B

d,s by Brownian diffu-

sion and F im
d,r and F im

d,s by impaction.
The gravitational settling fluxes can be calculated as

F g
d,r = −wt,δ ·c(h) ·η (22)15

F g
d,s = −wt,δ ·c(h) · (1−η) (23)

where η is the basal area index (fraction of cover) of the roughness elements. The
terminal velocity of dust particles near the surface, wt,δ , is calculated as

wt,δ = Tp,δ ·g (24)20

Brownian diffusion is another important mechanism responsible for dust particle (es-
pecially very small particles) to move across the laminar layer. This process of dust
transfer is closely related to momentum transfer. Dust particles, for which Brownian
diffusion is effective, usually do not rebound from the surface (Chamberlain, 1967). For25

these particles, the surface dust concentration, c(0), can be assumed to be zero. We
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therefore have

F B
d,r = −kp ·

c(h)

δ
·η (25)

τr = ν ·
ρaua(h)

δ
·η (26)

A combination of Eqs. (25) and (26) leads to5

F B
d,r = −

τr

ρaua(h)
·Sc−1 ·c(h) (27)

According to the drag partition theory, the drag on the ground surface is

τs = τ − τc − τr (28)
10

where τ is the total shear stress (or drag) on the surface, τc the pressure drag and
τr the drag on the roof of the roughness elements. The pressure drag, τc, leads to
a momentum reduction of the mean flow by production of turbulence, and the enhanced
turbulence has a positive contribution to the Brownian diffusion over the ground surface.
Further, we assume c(δ) = c(h). In analogy to Eq. (27), the deposition flux caused by15

Brownian diffusion to the ground surface is

F B
d,s = −

τ + τc − τr

ρa ·ua(h)
·Sc−1 ·c(h) (29)

Dust is also collected by the surfaces due to turbulent impaction. Studies show that
turbulent impaction is depended on turbulence near the surface and the dimensionless20

particle relaxation time T+
p,δ . Following SS80, dust deposition due to impaction on an

upward facing surface can be expressed as

F im
d,r + F im

d,s = − τ
ρa ·ua(h)

·10
− 3

T+
p,δ ·c(h) (30)
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where T+
p,δ is defined as

T+
p,δ =

Tp,δ ·u
2
∗

ν
(31)

Finally, it follows from Eqs. (12) to (31) that

Fd = −
{

τ
ρa ·ua(h)

[
E
Cd

·
τc

τ
+
(

1+
τc

τ

)
·Sc−1 +10

− 3
T+
p,δ

]
+wt,δ

}
c(h) (32)5

According to Eq. (4) and taking account of the rebound effect, the surface resistance is
found to be

rs =

{
R ·wdm

[
E
Cd

·
τc

τ
+
(

1+
τc

τ

)
·Sc−1 +10

− 3
T+
p,δ

]
+wt,δ

}−1

(33)
10

where

R = exp
(
−b
√

St
)

(34)

with b being an empirical constant of about 2 (Chamberlain, 1967). In the studies of
Giorgi (1988) and Zhang et al. (2001), b is set to 1. In Eq. (33),15

wdm =
τ

ρa ·ua(hc)
(35)

is the conductance for momentum. For smooth surfaces, wdm is given by

wdm = B2 ·u∗ (36)
20

where B2 is an empirical constant of about 3 (Zhang et al., 2001).
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The term τc/τ can be evaluated following the drag partition formulation of Shao and
Yang (2005):

τc

τ
=

βλe

1+βλe
(37)

and5

λe =
λ

(1−η)c2
·exp

(
−

c1λ

(1−η)c2

)
(38)

with c1 = 6, c2 = 0.1 and β = 200 which is the ratio of the pressure drag coefficient to
the surface drag coefficient.

To sum up, the parameters used in the new scheme are organized and shown in Ta-10

ble 2. In comparison to the existing dust deposition schemes, the new scheme appears
to require three additional parameters for the characterization of the rough surface,
namely, hc, λ and η (or dc), or if the aspect ratio of the roughness elements is given two
additional parameters, namely, hc and λ. Note however zd and z0 used for wind profile
description can be expressed following Shao and Yang (2008) in terms of hc, λ and15

η. Thus, the new scheme requires only one parameter more than existing schemes. If
hc/dc is specified, then, it requires no more parameters than the existing schemes.

3 Validation

For validation, we test the new scheme for four different surfaces studied in the wind-
tunnel experiment of Zhang et al. (2014). The values of relevant parameters are listed20

in Table 3. The predictions of deposition velocity as a function of dust particle size
are compared with the wind-tunnel measurements and the predictions using the SS80
and/or S82 schemes (Fig. 4).

For the sticky wood surface, roughness elements are absence. Dust collection is
realized through impaction, Brownian motion and gravitational settling. Particle re-25

bound does not occur for the stickiness of the surface. As shown in Fig. 4a, the new
8075
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scheme well predicted the wind-tunnel observations and performed better than the
SS80 scheme. It should be pointed out that due to the limitations of the measurement
device (a Phase Doppler Anemometry) used in the wind-tunnel experiments compari-
son can only be made for particles bigger than 1 µm.

The sand surface is used as the second case to test the new scheme (Fig. 4b). The5

difference between the sand surface and the sticky wood surface is that the presence
of the sand particles (act as roughness elements, although their sizes are small) not
only enhances turbulence over the surface but also improves the surface collection
efficiency. In our scheme, the size of the elements is taken to be the average diameter
of the sand particles and the element height half that diameter. The sand particles are10

assumed to be distributed uniformly on the surface and the distance between them
twice the diameter. The other surface parameters, such as the frontal area and basal
area indices can be calculated according to these assumptions. The rebound effect is
taken into account and the b parameter is set to 1. As sand grains are smooth (no
hair), Ain is set to 1.15

Again, the predictions of the new scheme agree well with the experimental data
(Fig. 4b). Compared with the SS80 scheme, the new scheme is obviously an improve-
ment, especially for the particle size range 1–10 µm. The enhancement of the deposi-
tion velocity can be attributed to the better treatment of interception in the new scheme,
which is neglected in the SS80 scheme. The comparison shows that even small rough-20

ness elements on a surface can play an important role in the process of dust deposition.
The third case tested is the tree surface with rather complex structures. The rough-

ness element (tree) size is dc = 5 mm and the height hc = 230 mm. Taking into account
the effect of leaves, we set Ain = 150 and λ = 0.4. The predictions of the new scheme
shown in Fig. 4c agree well with the experimental data and are better than the results25

of the S82 scheme.
We also tested the new scheme for the water surface. As shown in Fig. 4d, if par-

ticle size growth (due to high humidity near the water surface) is assumed, then the
predicted deposition velocity with the SS80 scheme can be made to match the ex-
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perimental data. However, this good agreement is for the wrong reason: the Silicon
Dioxide particles used in the experiments are not hygroscopic, to which the particle
growth theory (Fitzgerald, 1975) does not apply. On the other hand, it is incorrect to
treat the water surface under windy conditions as a smooth surface because of the
waves, bubbles and spray droplets emitted from the surface.5

The new scheme allows a better description of dust deposition on the water surface
which under windy conditions can be treated as a rough surface with waves acting
as roughness elements. The input parameters used in the new scheme are taken as
hc = 30z0, dc = 0.1 mm and the distances between the adjacent elements are sup-
posed to be equal to hc. The other surface parameters, including element density and10

frontal area index, can be computed from these parameters. Bubbles and/or spray
droplets over the water surface behave like hair on tree leaves, and we therefore set
Ain = 100. Using the wind field parameters derived from the wind-tunnel experiments,
the deposition velocities for different particle sizes are calculated. The results shown in
Fig. 5d confirm the good agreement between the scheme predictions with the exper-15

imental data. We have shown that the enhanced deposition over the water surface is
indeed not due to particle growth, but due to the enhanced collection capacities of the
water surface caused by waves, bubbles and spray droplets.

4 Sensitivity analysis

The main advantage of the new scheme is the improved capacity for parameteriza-20

tion of dust deposition to rough surfaces and the results shown in the previous section
highlighted this capacity. As the scheme through comparison with the wind-tunnel ob-
servations. As the scheme performance depends on the certainty of the input param-
eters listed in Table 2, it is important to examine the sensitivity of the scheme to these
parameters and to identify the most influential ones.25

Table 2 shows that dust deposition depends on particle properties (size and den-
sity), aerodynamic conditions (friction velocity, roughness length and zero-plane dis-
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placement) and surface characteristics (roughness element height, frontal area index
and fraction of cover). These parameters are not all necessarily independent, because
roughness length and zero-plane displacement are functions of the surface character-
istics (Shao and Yang, 2005, 2008).

We first consider the sensitivity of dust deposition to particle properties. The typical5

behavior of the deposition velocity as a function of particle size is as shown in Fig. 4:
it is large for small particles (< 0.01 µm) because of Brownian diffusion and is large for
big particles (> 50 µm) because of gravitational settling. Dust deposition is suppressed
for particles in the range from 0.01 to 50 µm, because they are too big for Brownian
diffusion and too small for gravitational settling. Normally, the minimum deposition ve-10

locity occurs in the range from 0.1 to 1 µm (Fig. 4a and b), but the enhancement of
interception shifts this range to smaller particles (Fig. 4c and d).

Particle density influences gravitational settling and the processes related to particle
inertia, such as impaction. As shown in Fig. 5a, the variability of particle density mainly
affects the deposition of particles larger than 5 µm via the modification of gravitational15

settling.
We now examine the sensitivity of the scheme to aerodynamic parameters. Friction

velocity is an aerodynamic parameter which influences the entire deposition process
from turbulent diffusion to surface collection. As shown in Fig. 5b, the influence of u∗
is predominantly for particles smaller than 10 µm, for which the deposition depends20

strongly on turbulent diffusion. An increased friction velocity also improves the surface
collection due to impaction and interception and hence results in a noticeable enhance-
ment of deposition for particles between 0.1 and 10 µm.

Finally, we consider the sensitivity of the scheme to surface characteristics. Rough-
ness element size affects the element collection efficiency and two parameters are25

used to describe the element size in the new scheme. One is element diameter, dc,
and the other the micro-roughness parameter, Ain. Micro-roughness features, such
as hair on the element, enhance the element collection efficiency due to interception
(Chamberlain, 1967; S82). For smooth elements (Ain = 1), the influence of dc can be
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readily analyzed. As Fig. 5c shows, dc mainly affects the deposition of particles in the
size range of 0.1 to 10 µm, because it determines the collection efficiency due to im-
paction and interception. For particles in the range of 0.1 to 5 µm, deposition velocity
is increased for small element size because of the improved interception. For particles
from 5 to 50 µm, impaction increases with element size and so does deposition velocity.5

While dc is usually too large to affect interception, the influence of Ain is significant
and most profound on the deposition of particles in the size range of 0.1 to 10 µm
(Fig. 5d).

The parameter R describes the rebound probability when a particle collides with the
surface. The influence of R on the deposition is visible for coarse particles larger than10

5 µm (Fig. 5e).
Roughness element frontal area index is a parameter used to describe the element

distribution on the surface, used in the drag partition theory. We now test its influence on
dust deposition. As shown in Fig. 5f, deposition velocity first increases, then decreases
with frontal area index. The influence is apparent for particles of all sizes, especially15

for particles in the range of 0.1 to 1 µm. Figure 5f suggests that in case of small frontal
area index, the roughness elements make the surface rougher and enhance the sur-
face collection, but as the number of roughness elements further increases, the surface
becomes again smoother and the surface collection efficiency is decreased. The influ-
ences of element frontal area index on surface resistance and deposition velocity for20

particles with diameter 1 µm are shown in Fig. 6.

5 Summary and discussion

A new dust deposition scheme is proposed by taking into account the impact of rough-
ness elements on turbulent diffusion and surface collection. The relationship between
the aerodynamics and surface collection process is established, and the effect of the25

roughness elements on dust deposition is incorporated in the scheme by using the
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analogy of deposition flux partition to drag partition. Also, a modified expression for
interception is proposed to account for the micro-roughness effect of the elements.

The new scheme has been tested against the wind-tunnel experimental data and
good agreement between the scheme predictions and the observations is achieved.
A new and more realistic explanation based on the new scheme is proposed for the5

enhanced dust deposition over water surfaces, i.e., water surface under windy con-
ditions should be treated as a rough surface due to waves and spray droplets. We
have however not yet validated the scheme against field observations. As wind-tunnel
data have limitations due to simple turbulence and simple surface conditions, we can-
not claim that the scheme is sufficiently thoroughly tested. Also, we do not claim that10

our scheme is superior to the existing schemes, such as those of Zhang et al. (2001),
Petroff and Zhang (2010), Kouznetsov and Sofiev (2012) etc. It appears desirable to do
a thorough comparison with the other existing schemes, together with the other model
developers, against a reliable field dataset.

The sensitivity of the new scheme to some of the important input parameters has15

been tested. It is found that dust density and particle rebound probability mostly influ-
ence the deposition of coarse particles larger than 5 µm; the size and micro-roughness
characteristics of the roughness elements influence interception noticeably and hence
the deposition of particles in the size range of 0.1 to 10 µm; friction velocity affects the
entire deposition process and influences the deposition of particles of all sizes; ele-20

ment frontal area index has a predominant effect on surface collection efficiency and
influences the deposition of particles of all sizes.

While we believe the new scheme has improved the capacity for parameterizing
dust deposition over rough surfaces, some questions remain unanswered and future
research is required in the following areas.25

The effect of wind intermittency: in our study, we assumed the wind is steady and
the effect of wind intermittency is neglected. But wind intermittency may have a sig-
nificant effect on dust deposition, including dust transport in the upper layer and dust
collection in the lower layer (Fig. 3). While some studies on the topic already exist, e.g.,
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the treatment of the effect of wind intermittency on aerodynamic resistance by Zhang
et al. (2001) and Seinfeld and Pandis (2012), the influence of wind intermittency on the
dust collection process deserves further research.

Deposition on complex surfaces: only surfaces with relatively simple and uniform
elements are tested in our study, but natural surfaces are much more complex. For5

example, how to predict dust deposition to surfaces with multi-size roughness elements
is important for regional and global dust models.

Effect of element-interaction on element collection efficiency: in analogy to the drag
partition theory, an expression for describing the distribution of total deposited dust on
different parts of the surface (elements or upward facing surface) has been proposed10

in our study. But the element collection efficiency is evaluated based on the study of
isolated elements. The effect on element collection efficiency due to the interactions
between the roughness elements remains rather unclear.
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Table 1. Typical values of CB and nB in Eq. (17) for different Reynolds numbers (Petroff et al.,
2008).

Re CB nB

1–4×103 0.467 1/2
4×103–4×104 0.203 3/5
4×104–4×105 0.025 4/5
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Table 2. Summary of the new dust deposition scheme and the scheme input parameters. Ac-
cording to the drag partition theory, z0 and zd which are not considered as input parameters
can be estimated from surface parameters and u∗ (Shao and Yang, 2005, 2008). The particle
density is considered as a constant (2200 kgm−3) in this study.
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Table 3. Parameters for validation of the new scheme for the four different surfaces stud-
ied in the wind-tunnel experiments of Zhang et al. (2014). For all tests, particle density
ρp = 2200 kgm−3 is used. The wind parameters are obtained from the experimental data.

zr u∗ z0 zd hc dc λ Ain b
(mm) (ms−1) (mm) (mm) (mm) (mm)

Sticky
0.12 0.075 0 0 0 0 1 0

15 0.40 0.033 0 0 0 0 1 0
wood 0.54 0.032 0 0 0 0 1 0

0.14 0.153 0 0.2 0.1 0.125 1 1
Sand 15 0.32 0.143 0 0.2 0.1 0.125 1 1

0.49 0.135 0 0.2 0.1 0.125 1 1

0.24 5.927 200 230 5 0.4 150 0.01
Tree 250 0.50 2.877 200 230 5 0.4 150 0.01

1.06 2.106 200 230 5 0.4 150 0.01

0.15 0.300 0 30z0 0.1 0.538 100 0
Water 25 0.36 0.306 0 30z0 0.1 0.538 100 0

0.57 0.309 0 30z0 0.1 0.538 100 0
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Table A1. List of symbols.

Ain Empirical parameter for surface micro-roughness –
characteristics

B1, B2 Empirical constant –
b Numerical constant in rebound expression –
c Dust concentration kgm−3

Cc Cunningham correction factor –
Cd Drag coefficient for obstacle –
Dp, Dp,δ Dry/wet particle diameter m
dc, d l

c, d s
c Dimension of the roughness elements, large collector m

(i.e. roughness elements) and small collector
E , EB, E in, E im Element collection efficiency for different mechanisms –
Fd Dust deposition flux kgm−2 s−1

g Gravitational acceleration ms−2

h Thickness of surface collection layer m
hc Height of roughness element m
KB Boltzmann constant JK−1

Kp Particle eddy diffusivity m2 s−1

KT Turbulent (or eddy) viscosity m2 s−1

kp Brownian diffusion coefficient m2 s−1

R Reduction in collection caused by rebound –
Re Reynolds number –
ra Aerodynamic resistance sm−1

rs Surface collection resistance sm−1

rg Resistance of gravity (inverse of terminal velocity) sm−1

Sc Schmidt number –
ScT Turbulent Schmidt number –
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Table A1. Continued.

St Stokes number –
Tp Relaxation time of particle s
T +

p Dimensionless particle relaxation time –
ua Horizontal velocity of air ms−1

u∗ Friction velocity ms−1

wd Deposition velocity wd = −Fd/C ms−1

wt Terminal velocity ms−1

z, zr Height and reference height m
z0, zd Roughness length and zero-plane displacement m

Greek symbols

β Ratio of the drag coefficient for isolated roughness element –
to that for bare surface, evaluated to 200 in this study

δ Thickness of laminar layer m
η Basal area index –
κ von Karman constant –
λ Frontal area index –
µ Dynamic viscosity of air kgm−1 s−1

ν Kinematic viscosity of air m2 s−1

ρp, ρa Particle/air density kgm−3

τ, τc, τs, τr Drag exerted on different parts of the surface Nm−2
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   564 

 565 

Fig. 1: Comparison of deposition velocity predicted by the SS80 and S82 schemes (lines) with the 566 

wind-tunnel measurements (symbols) over three different surfaces. (a) Sticky wood; (b) Sand; (c) 567 

Tree. 568 
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Fig. 1. Comparison of deposition velocity predicted by the SS80 and S82 schemes (lines) with
the wind-tunnel measurements (symbols) over three different surfaces. (a) Sticky wood; (b)
Sand; (c) Tree.
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 587 
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 590 

591 

Fig. 2: Illustration of rough surface. (a) A roughness element with height hc and diameter dc; (b) 592 

Roughness elements randomly distributed on the surface. 593 
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(a) Roughness element (b) Top view of rough surface 

Fig. 2. Illustration of rough surface. (a) A roughness element with height hc and diameter dc;
(b) Roughness elements randomly distributed on the surface.
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 616 

 617 
Fig. 3: Illustration of the two-layer model. The lower layer, from the ground to the top of the 618 

laminar (or quasi-laminar) layer, is the collection layer where the dust collection process takes 619 

place. Over the collection layer is the transfer layer, where turbulent transfer and gravitational 620 

settling are dominant and the dust flux is vertically constant. Air flow is represented by the dash 621 

lines.  622 

 623 

 624 

 625 

 626 

 627 

z 

Transfer layer 
(Turbulent transfer and 
gravitational settling) 
Constant Flux  

Collection layer 
(Collection process) 

h 

Fig. 3. Illustration of the two-layer model. The lower layer, from the ground to the top of the
laminar (or quasi-laminar) layer, is the collection layer where the dust collection process takes
place. Over the collection layer is the transfer layer, where turbulent transfer and gravitational
settling are dominant and the dust flux is vertically constant. Air flow is represented by the dash
lines.
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 628 

Fig. 4: Comparison of deposition velocity, dw , as a function of particle diameter, Dp, predicted 629 

by the new scheme (solid lines) and the SS80 or S82 scheme (dashed lines) with the wind-tunnel  630 

(WT) measurements (symbols) for the (a) sticky wood, (b) sand, (c) tree and (d) water surface. 631 
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Fig. 4. Comparison of deposition velocity, wd, as a function of particle diameter, Dp, predicted
by the new scheme (solid lines) and the SS80 or S82 scheme (dashed lines) with the wind-
tunnel (WT) measurements (symbols) for the (a) sticky wood, (b) sand, (c) tree and (d) water
surface.

8092

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/8063/2014/acpd-14-8063-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/8063/2014/acpd-14-8063-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 8063–8094, 2014

A new
parameterization of
dust dry deposition
over rough surfaces

J. Zhang and Y. Shao

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

                                        

 

 632 
Fig. 5: Sensitivity of deposition velocity to (a) particle density, (b) friction velocity, (c) roughness 633 

element size, (d) surface micro-roughness, (e) rebound probability and (f) element frontal area 634 

index. The deposition velocity is calculated for the reference height 1 m and the relevant 635 

parameter is evaluated as follows unless otherwise stated: ρp = 2200 kg·m-3, u* = 0.6 m·s-1, z0 = 10 636 

mm, zd = 100 mm , hc = 150 mm, dc = 5 mm, Ain = 100, b = 1 and 0 .1λ = .  637 
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Fig. 5. Sensitivity of deposition velocity to (a) particle density, (b) friction velocity, (c) rough-
ness element size, (d) surface micro-roughness, (e) rebound probability and (f) element frontal
area index. The deposition velocity is calculated for the reference height 1 m and the relevant
parameter is evaluated as follows unless otherwise stated: ρp = 2200 kgm−3, u∗ = 0.6 ms−1,
z0 = 10 mm, zd = 100 mm, hc = 150 mm, dc = 5 mm, Ain = 100, b = 1 and λ = 0.1.
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 645 

                                                          646 

Fig. 6: The influence of element frontal area index on (a) surface resistance and (b) deposition 647 

velocity for particles with diameter of 1 μm. The relevant parameters are the same as for Fig. 5. 648 
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Fig. 6. The influence of element frontal area index on (a) surface resistance and (b) deposition
velocity for particles with diameter of 1 µm. The relevant parameters are the same as for Fig. 5.
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